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Determinant (Volume) Maximization Problem

Input: a set of 𝑛𝑛 vectors V ∈ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
Output: a subset 𝑆𝑆 ⊂ 𝑉𝑉 of size 𝑘𝑘 with the maximum volume

• Parallelepiped spanned by the points in 𝑆𝑆

Equivalent Formulation: 
Reuse 𝑉𝑉 to denote the matrix where its columns are the vectors in 𝑉𝑉
• Let 𝑀𝑀 be the gram matrix 𝑉𝑉𝑇𝑇𝑉𝑉
• Choose 𝑆𝑆 such that det(𝑀𝑀𝑆𝑆,𝑆𝑆) is maximized

𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑣𝑣𝑖𝑖 · 𝑣𝑣𝑗𝑗

det 𝑀𝑀𝑆𝑆,𝑆𝑆 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆 2
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What is known?
• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 𝑒𝑒𝑐𝑐-approximation [Nik’15]
• Greedy is a popular algorithm: achieves approximation factor 𝑘𝑘!
 𝑈𝑈 ← ∅
 For 𝑘𝑘 iterations, 
 Add to 𝑈𝑈 the farthest point from the subspace spanned by 𝑈𝑈

• Greedy performs very well in practice

𝒌𝒌 = 𝟐𝟐



Determinantal Point Processes (DPP)
DPP: Very popular probabilistic model, where given a set of vectors 𝑉𝑉, samples any 𝑘𝑘-subset 𝑆𝑆 with

probability proportional to this determinant.

• Maximum a posteriori (MAP) decoding is determinant maximization

• Volume/determinant is a notion of diversity

• NeurIPS’18 Tutorial, Negative Dependence, Stable Polynomials, and All That, Jegelka, Sra
• ICML’19 Workshop, Negative Dependence: Theory and Applications in Machine Learning, Gartrell, 

Gillenwater, Kulesza, Mariet
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Points in a high 
dimensional space

Objects (documents, 
images, etc)

Feature 
Vectors



Application: Diversity Maximization

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘,

Goal: pick 𝒌𝒌 points while maximizing “diversity”. 

𝒌𝒌 = 𝟑𝟑
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Composable Core-sets
Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

 Composable Core-sets have been studied for the diversity Maximization problems, for other

notions of diversity: minimum pairwise distance, sum of pairwise distances, etc.

 Determinant maximization is a “higher order” notion of diversity

Composable Core-sets [AAIMV’13 and IMMM’14]:

The union of coresets is a coreset for the union

• Let 𝒇𝒇 be an optimization function

o E.g. 𝒇𝒇(𝑽𝑽): solution to 𝑘𝑘 determinant maximization

• Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their coresets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎, 

o 𝒇𝒇 𝑼𝑼𝟏𝟏 ∪⋯∪ 𝑼𝑼𝒎𝒎 approximates 𝒇𝒇 𝑽𝑽𝟏𝟏 ∪⋯∪ 𝑽𝑽𝒎𝒎 by a factor 𝜶𝜶



Applications: Streaming Computation
• Streaming Computation: 

• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage



Applications: Streaming Computation
• Streaming Computation: 

• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

• Composable Core-set
• Divide into chunks

𝒏𝒏 𝒏𝒏



Applications: Streaming Computation
• Streaming Computation: 

• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

• Composable Core-set
• Divide into chunks
• Compute Core-set for each chunk as it arrives

𝒏𝒏 𝒏𝒏

Core-set



Applications: Streaming Computation
• Streaming Computation: 

• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

• Composable Core-set 
• Divide into chunks
• Compute Core-set for each chunk as it arrives

𝒏𝒏 𝒏𝒏

Core-set Core-set



Applications: Streaming Computation
• Streaming Computation: 

• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

• Composable Core-set 
• Divide into chunks
• Compute Core-set for each chunk as it arrives
• Space goes down from 𝑛𝑛 to 𝑛𝑛

𝒏𝒏 𝒏𝒏

Core-set Core-set



Applications: Distributed Computation
• Streaming Computation
• Distributed System:

• Each machine holds a block of data.
• A composable core-set is computed and sent to the server

Core-set

Data

Data

Data

Mapper

Mapper

Mapper

Reducer Solution



Applications: Improving Runtime
• Streaming Computation
• Distributed System
• Similar framework for improving the runtime



Can we get a composable core-set of small size 
for the determinant maximization problem?



Composable Core-sets for Volume Maximization

LP-based Optimal Approximation Algorithm of [IMOR’18]:

There exists a polynomial time algorithm for computing an �𝑶𝑶 𝒌𝒌 𝒌𝒌/𝟐𝟐 -composable

core-set of size �𝑶𝑶(𝒌𝒌) for the volume maximization problem.

[IMOR’18]
Approximation �𝑶𝑶 𝒌𝒌 𝒌𝒌/𝟐𝟐

Core-set Size �𝑶𝑶(𝒌𝒌)
Simple? ×



Composable Core-sets for Volume Maximization

Lower bound [IMOR’18]:

Any composable core-set of size 𝒌𝒌𝑶𝑶(𝟏𝟏) for the volume maximization problem must

have an approximation factor of 𝛀𝛀(𝒌𝒌)
𝒌𝒌
𝟐𝟐(𝟏𝟏−𝒐𝒐 𝟏𝟏 ).

Lower Bound [IMOR’18]
Approximation 𝛀𝛀 𝒌𝒌

𝒌𝒌
𝟐𝟐−𝒐𝒐 𝒌𝒌 �𝑶𝑶 𝒌𝒌

𝒌𝒌
𝟐𝟐

Core-set Size 𝒌𝒌𝑶𝑶 𝟏𝟏 �𝑶𝑶(𝒌𝒌)
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Our Results

Lower Bound [IMOR’18] Greedy 
Approximation 𝛀𝛀 𝒌𝒌

𝒌𝒌
𝟐𝟐−𝒐𝒐 𝒌𝒌 �𝑶𝑶 𝒌𝒌

𝒌𝒌
𝟐𝟐 𝑶𝑶(𝑪𝑪𝒌𝒌𝟐𝟐)

Core-set Size 𝒌𝒌𝑶𝑶 𝟏𝟏 �𝑶𝑶(𝒌𝒌) 𝒌𝒌
Simple? × ✔

The widely used Greedy algorithm produces a composable core-set of size 𝑘𝑘 with

approximation factor 𝑂𝑂(𝐶𝐶𝑐𝑐2).



Our Results

The Local Search Algorithm produces a composable core-set of size 𝑘𝑘 with

approximation factor 𝑂𝑂 𝑘𝑘 2𝑐𝑐.

Lower Bound [IMOR’18] Greedy Local Search
Approximation 𝛀𝛀 𝒌𝒌

𝒌𝒌
𝟐𝟐−𝒐𝒐 𝒌𝒌 �𝑶𝑶 𝒌𝒌

𝒌𝒌
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Core-set Size 𝒌𝒌𝑶𝑶 𝟏𝟏 �𝑶𝑶(𝒌𝒌) 𝒌𝒌 𝒌𝒌
Simple? × ✔ ✔
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This Talk

The Local Search Algorithm produces a composable core-set of size 𝑘𝑘 with

approximation factor 𝑂𝑂 𝑘𝑘 𝑐𝑐 for the volume maximization problem.

In comparison to the optimal core-set algorithm
 Approximation O 𝑘𝑘 𝒌𝒌 as opposed to 𝑂𝑂 𝑘𝑘 log 𝑘𝑘 𝒌𝒌/𝟐𝟐

 Smaller Size 𝑘𝑘 as opposed to 𝑂𝑂 𝑘𝑘 log 𝑘𝑘
 Simpler to implement (similar to Greedy) 

 Better performance in practice



The Local Search Algorithm 

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



The Local Search Algorithm 

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



The Local Search Algorithm 

𝒌𝒌 = 𝟑𝟑

𝑞𝑞

𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



The Local Search Algorithm 

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



The Local Search Algorithm 

𝒌𝒌 = 𝟑𝟑

𝑞𝑞

𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



The Local Search Algorithm 

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



To bound the run time

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

Start with a crude approximation 
(Greedy algorithm)

If it increases by at least a factor of  
(1 + 𝜖𝜖)



Checking the condition

𝑞𝑞𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯𝑺𝑺∖ 𝒒𝒒 > 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒒𝒒,𝑯𝑯𝑺𝑺∖ 𝒒𝒒 )

(𝒌𝒌 − 𝟏𝟏)-dimensional Subspace



Main Lemma [informal]: 
Local Search preserves maximum distance to “all” subspaces of dimension 𝒌𝒌 − 𝟏𝟏



𝑽𝑽 is the point set
𝑺𝑺 = 𝐿𝐿𝑆𝑆 𝑉𝑉 is the core-set produced by local search

Main Lemma [informal]: 
Local Search preserves maximum distance to “all” subspaces of dimension 𝒌𝒌 − 𝟏𝟏



Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑞𝑞∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑽𝑽 is the point set
𝑺𝑺 = 𝐿𝐿𝑆𝑆 𝑉𝑉 is the core-set produced by local search

Main Lemma [informal]: 
Local Search preserves maximum distance to “all” subspaces of dimension 𝒌𝒌 − 𝟏𝟏



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

𝑝𝑝

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

𝑝𝑝

𝑮𝑮

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

𝑝𝑝

𝑮𝑮

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

𝑝𝑝

𝑮𝑮

≤ 𝑥𝑥
≤ 𝑥𝑥

≤ 𝑥𝑥

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal: 𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝒌𝒌𝟐𝟐

𝑝𝑝

𝑮𝑮

≤ 2𝑘𝑘𝑥𝑥
≤ 𝑥𝑥

≤ 𝑥𝑥
≤ 𝑥𝑥

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

𝑯𝑯𝑝𝑝

𝑮𝑮

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝒌𝒌𝟐𝟐

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

• Let 𝑝𝑝𝐻𝐻 be the projection of 𝑝𝑝 onto 𝐺𝐺

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝒌𝒌𝟐𝟐

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

• Let 𝑝𝑝𝐻𝐻 be the projection of 𝑝𝑝 onto 𝐺𝐺

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

≤ 𝑘𝑘𝑥𝑥

≤ 𝑘𝑘𝑥𝑥

Lemma 1: 𝒅𝒅 𝒑𝒑,𝒑𝒑𝑯𝑯 ≤ 𝒌𝒌𝟐𝟐

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝒌𝒌𝟐𝟐

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

• Let 𝑝𝑝𝐻𝐻 be the projection of 𝑝𝑝 onto 𝐺𝐺

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

≤ 2𝑘𝑘𝑥𝑥

Lemma 1: 𝒅𝒅 𝒑𝒑,𝒑𝒑𝑯𝑯 ≤ 𝒌𝒌𝟐𝟐

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝒌𝒌𝟐𝟐

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1



Proof. 

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1



Proof. 

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

• Let 𝑯𝑯−𝒅𝒅 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒅𝒅

Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒅𝒅

𝑞𝑞𝑖𝑖



Proof. 

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

• Let 𝑯𝑯−𝒅𝒅 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒅𝒅

• Since we did not choose 𝑝𝑝 in LS,  𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒅𝒅

𝑞𝑞𝑖𝑖



Proof. 

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

• Let 𝑯𝑯−𝒅𝒅 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒅𝒅

• Since we did not choose 𝑝𝑝 in LS,  𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

• Since 𝑝𝑝𝐻𝐻 is a projection of 𝑝𝑝 onto 𝐻𝐻,  𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒅𝒅

•

Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒅𝒅

𝑞𝑞𝑖𝑖



Proof. 

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

• Let 𝑯𝑯−𝒅𝒅 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒅𝒅

• Since we did not choose 𝑝𝑝 in LS,  𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

• Since 𝑝𝑝𝐻𝐻 is a projection of 𝑝𝑝 onto 𝐻𝐻,  𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒑𝒑,𝑯𝑯−𝒅𝒅)

• Thus 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒅𝒅

𝑞𝑞𝑖𝑖



Proof. 

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

• Let 𝑯𝑯−𝒅𝒅 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒅𝒅

• Since we did not choose 𝑝𝑝 in LS,  𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

• Since 𝑝𝑝𝐻𝐻 is a projection of 𝑝𝑝 onto 𝐻𝐻,  𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒑𝒑,𝑯𝑯−𝒅𝒅)

• Thus 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

• Thus |𝜶𝜶𝒅𝒅| ≤ 𝟏𝟏

Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒅𝒅

𝑞𝑞𝑖𝑖



Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1



Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Assumption: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖 ,𝐺𝐺 ≤ 𝑥𝑥



Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Assumption: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖 ,𝐺𝐺 ≤ 𝑥𝑥

Lemma2: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝐻𝐻 ,𝐺𝐺 ≤ ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑞𝑞𝑖𝑖 ,𝐺𝐺) ≤ 𝑘𝑘 ⋅ 𝑥𝑥 ≤ 𝑘𝑘𝑥𝑥



Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Assumption: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖 ,𝐺𝐺 ≤ 𝑥𝑥

Lemma2: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝐻𝐻 ,𝐺𝐺 ≤ ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑞𝑞𝑖𝑖 ,𝐺𝐺) ≤ 𝑘𝑘 ⋅ 𝑥𝑥 ≤ 𝑘𝑘𝑥𝑥

Lemma 1: 𝑑𝑑 𝑝𝑝,𝑝𝑝𝐻𝐻 ≤ 𝑘𝑘𝑥𝑥



Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Assumption: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖 ,𝐺𝐺 ≤ 𝑥𝑥

Lemma2: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝐻𝐻 ,𝐺𝐺 ≤ ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑞𝑞𝑖𝑖 ,𝐺𝐺) ≤ 𝑘𝑘 ⋅ 𝑥𝑥 ≤ 𝑘𝑘𝑥𝑥

Lemma 1: 𝑑𝑑 𝑝𝑝,𝑝𝑝𝐻𝐻 ≤ 𝑘𝑘𝑥𝑥 Goal: 𝑑𝑑 𝑝𝑝,𝐺𝐺 ≤ 2𝑘𝑘𝑥𝑥



Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Assumption: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖 ,𝐺𝐺 ≤ 𝑥𝑥

Lemma2: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝐻𝐻 ,𝐺𝐺 ≤ ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑞𝑞𝑖𝑖 ,𝐺𝐺) ≤ 𝑘𝑘 ⋅ 𝑥𝑥 ≤ 𝑘𝑘𝑥𝑥

Lemma 1: 𝑑𝑑 𝑝𝑝,𝑝𝑝𝐻𝐻 ≤ 𝑘𝑘𝑥𝑥 Goal: 𝑑𝑑 𝑝𝑝,𝐺𝐺 ≤ 2𝑘𝑘𝑥𝑥

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved
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Main Theorem
Local Search produces a core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝑉𝑉2

𝑉𝑉3

𝑉𝑉1
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Main Theorem
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𝑉𝑉2

𝑉𝑉3

𝑉𝑉1

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 
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𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖
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𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑
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• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖
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𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets
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 Total approximation factor 2𝑘𝑘 𝑐𝑐
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Empirical Results

Data Set
• MNIST, with number of parts = 10
• MNIST, with number of parts = 50
• GENES, with number of parts = 10

Process
- Partition the data set randomly into parts
- Compute a core-set using one of the algorithms: Greedy, Local 

Search, LP-Based algorithm of [IMOR’18]
- Use greedy on the union of the coresets



Local Search vs Greedy

Improvement of the solution of Local Search 
over Greedy
 On average, 1.2%, 2.5%, and 9.6% 

improvement
 Some cases up to 58% improvement

Ratio of runtime of Local Search over Greedy
 On average, 6 times slower



Local Search vs. LP-based Algorithm of [IMOR’18]

Improvement of the solution of Local Search 
over [IMOR’18]
 On average, 1.4%, 1.8%, and 7.3% 

improvement
 Some cases up to 63% improvement

Ratio of runtime of Local Search over 
[IMOR’18]
 For lower values of k, Local Search is up to 

50 times faster.
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Core-set Size 𝑂𝑂(𝑘𝑘 log𝑘𝑘) 𝑘𝑘 𝑘𝑘
Simple? × ✔ ✔

Empirical Approximation Performs Best

Empirical Runtime Slowest Fastest 4 times slower than Greedy.

Summary
• Volume/Determinant Maximization Problem
• Notion of composable core-sets
• Algorithms that find composable core-sets for volume/determinant maximization
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Thank you!
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