
Composable Core-sets for Determinant Maximization:

A Simple Near-Optimal Algorithm

Sepideh Mahabadi

TTIC

Piotr Indyk
MIT

Shayan Oveis Gharan
U. of Washington

Alireza Rezaei
U. of Washington

Volume (Determinant) Maximization Problem

Input: a set of 𝑛𝑛 vectors V ∈ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

𝒌𝒌 = 𝟐𝟐

Volume (Determinant) Maximization Problem

Input: a set of 𝑛𝑛 vectors V ∈ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
Output: a subset 𝑆𝑆 ⊂ 𝑉𝑉 of size 𝑘𝑘 with the maximum volume

• Parallelepiped spanned by the points in 𝑆𝑆

𝒌𝒌 = 𝟐𝟐

Volume (Determinant) Maximization Problem

Input: a set of 𝑛𝑛 vectors V ∈ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
Output: a subset 𝑆𝑆 ⊂ 𝑉𝑉 of size 𝑘𝑘 with the maximum volume

• Parallelepiped spanned by the points in 𝑆𝑆

𝒌𝒌 = 𝟐𝟐

Determinant (Volume) Maximization Problem

Input: a set of 𝑛𝑛 vectors V ∈ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
Output: a subset 𝑆𝑆 ⊂ 𝑉𝑉 of size 𝑘𝑘 with the maximum volume

• Parallelepiped spanned by the points in 𝑆𝑆

Equivalent Formulation:
Reuse 𝑉𝑉 to denote the matrix where its columns are the vectors in 𝑉𝑉

𝑣𝑣1 𝑣𝑣2 …𝑣𝑣𝑛𝑛

Determinant (Volume) Maximization Problem

Input: a set of 𝑛𝑛 vectors V ∈ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
Output: a subset 𝑆𝑆 ⊂ 𝑉𝑉 of size 𝑘𝑘 with the maximum volume

• Parallelepiped spanned by the points in 𝑆𝑆

Equivalent Formulation:
Reuse 𝑉𝑉 to denote the matrix where its columns are the vectors in 𝑉𝑉
• Let 𝑀𝑀 be the gram matrix 𝑉𝑉𝑇𝑇𝑉𝑉 𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑣𝑣𝑖𝑖 · 𝑣𝑣𝑗𝑗

𝑣𝑣1
𝑣𝑣2
…
𝑣𝑣𝑛𝑛

𝑣𝑣1 𝑣𝑣2 …𝑣𝑣𝑛𝑛 𝑣𝑣𝑖𝑖 ⋅ 𝑣𝑣𝑗𝑗𝑖𝑖

𝑗𝑗

Determinant (Volume) Maximization Problem

Input: a set of 𝑛𝑛 vectors V ∈ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
Output: a subset 𝑆𝑆 ⊂ 𝑉𝑉 of size 𝑘𝑘 with the maximum volume

• Parallelepiped spanned by the points in 𝑆𝑆

Equivalent Formulation:
Reuse 𝑉𝑉 to denote the matrix where its columns are the vectors in 𝑉𝑉
• Let 𝑀𝑀 be the gram matrix 𝑉𝑉𝑇𝑇𝑉𝑉
• Choose 𝑆𝑆 such that det(𝑀𝑀𝑆𝑆,𝑆𝑆) is maximized

𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑣𝑣𝑖𝑖 · 𝑣𝑣𝑗𝑗

det 𝑀𝑀𝑆𝑆,𝑆𝑆 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆 2

𝑣𝑣1
𝑣𝑣2
…
𝑣𝑣𝑛𝑛

𝑣𝑣1 𝑣𝑣2 …𝑣𝑣𝑛𝑛

What is known?
• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]

What is known?
• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 𝑒𝑒𝑐𝑐-approximation [Nik’15]

What is known?
• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 𝑒𝑒𝑐𝑐-approximation [Nik’15]
• Greedy is a popular algorithm: achieves approximation factor 𝑘𝑘!
 𝑈𝑈 ← ∅
 For 𝑘𝑘 iterations,
 Add to 𝑈𝑈 the farthest point from the subspace spanned by 𝑈𝑈

𝒌𝒌 = 𝟐𝟐

What is known?
• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 𝑒𝑒𝑐𝑐-approximation [Nik’15]
• Greedy is a popular algorithm: achieves approximation factor 𝑘𝑘!
 𝑈𝑈 ← ∅
 For 𝑘𝑘 iterations,
 Add to 𝑈𝑈 the farthest point from the subspace spanned by 𝑈𝑈

𝒌𝒌 = 𝟐𝟐

What is known?
• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 𝑒𝑒𝑐𝑐-approximation [Nik’15]
• Greedy is a popular algorithm: achieves approximation factor 𝑘𝑘!
 𝑈𝑈 ← ∅
 For 𝑘𝑘 iterations,
 Add to 𝑈𝑈 the farthest point from the subspace spanned by 𝑈𝑈

𝒌𝒌 = 𝟐𝟐

What is known?
• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 𝑒𝑒𝑐𝑐-approximation [Nik’15]
• Greedy is a popular algorithm: achieves approximation factor 𝑘𝑘!
 𝑈𝑈 ← ∅
 For 𝑘𝑘 iterations,
 Add to 𝑈𝑈 the farthest point from the subspace spanned by 𝑈𝑈

𝒌𝒌 = 𝟐𝟐

What is known?
• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 𝑒𝑒𝑐𝑐-approximation [Nik’15]
• Greedy is a popular algorithm: achieves approximation factor 𝑘𝑘!
 𝑈𝑈 ← ∅
 For 𝑘𝑘 iterations,
 Add to 𝑈𝑈 the farthest point from the subspace spanned by 𝑈𝑈

𝒌𝒌 = 𝟐𝟐

What is known?
• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 𝑒𝑒𝑐𝑐-approximation [Nik’15]
• Greedy is a popular algorithm: achieves approximation factor 𝑘𝑘!
 𝑈𝑈 ← ∅
 For 𝑘𝑘 iterations,
 Add to 𝑈𝑈 the farthest point from the subspace spanned by 𝑈𝑈

• Greedy performs very well in practice

𝒌𝒌 = 𝟐𝟐

Determinantal Point Processes (DPP)
DPP: Very popular probabilistic model, where given a set of vectors 𝑉𝑉, samples any 𝑘𝑘-subset 𝑆𝑆 with

probability proportional to this determinant.

• Maximum a posteriori (MAP) decoding is determinant maximization

• Volume/determinant is a notion of diversity

• NeurIPS’18 Tutorial, Negative Dependence, Stable Polynomials, and All That, Jegelka, Sra
• ICML’19 Workshop, Negative Dependence: Theory and Applications in Machine Learning, Gartrell,

Gillenwater, Kulesza, Mariet

Application: Diversity Maximization

Given a set of objects, how to pick a few of them while maximizing diversity?

Application: Diversity Maximization

• Searching

Given a set of objects, how to pick a few of them while maximizing diversity?

Application: Diversity Maximization

• Searching

Given a set of objects, how to pick a few of them while maximizing diversity?

Application: Diversity Maximization

Points in a high
dimensional space

Objects (documents,
images, etc)

Feature
Vectors

Application: Diversity Maximization

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘,

Goal: pick 𝒌𝒌 points while maximizing “diversity”.

𝒌𝒌 = 𝟑𝟑

Determinantal Point Processes (DPP)
DPP: Very popular probabilistic model, where given a set of vectors 𝑉𝑉, samples any 𝑘𝑘-subset 𝑆𝑆 with

probability proportional to this determinant.

• Maximum a posteriori (MAP) decoding is determinant maximization

• Volume/determinant is a notion of diversity

[MJK’17,GCGS’14] Video summarization
[KT+’12, CGGS’15,KT’11] Document
summarization
[YFZ+’16] Tweet generation
[LCYO’16] Object detection
….

Applications

Determinantal Point Processes (DPP)

• Most applications deal with massive data
• Lots of effort for solving the problem in massive

data models of computation [MJK’17, WIB’14, PJG+’14,
MKSK’13, MKBK’15, MZ’15, MZ’15, BENW’15]

• e.g. streaming, distributed, parallel

DPP: Very popular probabilistic model, where given a set of vectors 𝑉𝑉, samples any 𝑘𝑘-subset 𝑆𝑆 with

probability proportional to this determinant.

• Maximum a posteriori (MAP) decoding is determinant maximization

• Volume/determinant is a notion of diversity

[MJK’17,GCGS’14] Video summarization
[KT+’12, CGGS’15,KT’11] Document
summarization
[YFZ+’16] Tweet generation
[LCYO’16] Object detection
….

Applications

Determinantal Point Processes (DPP)

• Most applications deal with massive data
• Lots of effort for solving the problem in massive

data models of computation [MJK’17, WIB’14, PJG+’14,
MKSK’13, MKBK’15, MZ’15, MZ’15, BENW’15]

• e.g. streaming, distributed, parallel

DPP: Very popular probabilistic model, where given a set of vectors 𝑉𝑉, samples any 𝑘𝑘-subset 𝑆𝑆 with

probability proportional to this determinant.

• Maximum a posteriori (MAP) decoding is determinant maximization

• Volume/determinant is a notion of diversity

[MJK’17,GCGS’14] Video summarization
[KT+’12, CGGS’15,KT’11] Document
summarization
[YFZ+’16] Tweet generation
[LCYO’16] Object detection
….

Applications

Composable Core-sets

Core-sets

Solving the problem over 𝑼𝑼 gives a good approximation of solving the problem
over 𝑽𝑽

Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

Composable Core-sets
Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

Composable Core-sets [AAIMV’13 and IMMM’14]:

The union of coresets is a coreset for the union

Composable Core-sets
Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

Composable Core-sets [AAIMV’13 and IMMM’14]:

The union of coresets is a coreset for the union

• Let 𝒇𝒇 be an optimization function

o E.g. 𝒇𝒇(𝑽𝑽): solution to 𝑘𝑘 determinant maximization

Composable Core-sets
Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

Composable Core-sets [AAIMV’13 and IMMM’14]:

The union of coresets is a coreset for the union

• Let 𝒇𝒇 be an optimization function

o E.g. 𝒇𝒇(𝑽𝑽): solution to 𝑘𝑘 determinant maximization

• Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their coresets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎,

o 𝒇𝒇 𝑼𝑼𝟏𝟏 ∪⋯∪ 𝑼𝑼𝒎𝒎 approximates 𝒇𝒇 𝑽𝑽𝟏𝟏 ∪⋯∪ 𝑽𝑽𝒎𝒎 by a factor 𝜶𝜶

Composable Core-sets
Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

Composable Core-sets [AAIMV’13 and IMMM’14]:

The union of coresets is a coreset for the union

• Let 𝒇𝒇 be an optimization function

o E.g. 𝒇𝒇(𝑽𝑽): solution to 𝑘𝑘 determinant maximization

• Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their coresets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎,

o 𝒇𝒇 𝑼𝑼𝟏𝟏 ∪⋯∪ 𝑼𝑼𝒎𝒎 approximates 𝒇𝒇 𝑽𝑽𝟏𝟏 ∪⋯∪ 𝑽𝑽𝒎𝒎 by a factor 𝜶𝜶

Composable Core-sets
Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

Composable Core-sets [AAIMV’13 and IMMM’14]:

The union of coresets is a coreset for the union

• Let 𝒇𝒇 be an optimization function

o E.g. 𝒇𝒇(𝑽𝑽): solution to 𝑘𝑘 determinant maximization

• Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their coresets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎,

o 𝒇𝒇 𝑼𝑼𝟏𝟏 ∪⋯∪ 𝑼𝑼𝒎𝒎 approximates 𝒇𝒇 𝑽𝑽𝟏𝟏 ∪⋯∪ 𝑽𝑽𝒎𝒎 by a factor 𝜶𝜶

Composable Core-sets

𝒇𝒇

Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

Composable Core-sets [AAIMV’13 and IMMM’14]:

The union of coresets is a coreset for the union

• Let 𝒇𝒇 be an optimization function

o E.g. 𝒇𝒇(𝑽𝑽): solution to 𝑘𝑘 determinant maximization

• Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their coresets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎,

o 𝒇𝒇 𝑼𝑼𝟏𝟏 ∪⋯∪ 𝑼𝑼𝒎𝒎 approximates 𝒇𝒇 𝑽𝑽𝟏𝟏 ∪⋯∪ 𝑽𝑽𝒎𝒎 by a factor 𝜶𝜶

Composable Core-sets
Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

𝒇𝒇

Composable Core-sets [AAIMV’13 and IMMM’14]:

The union of coresets is a coreset for the union

• Let 𝒇𝒇 be an optimization function

o E.g. 𝒇𝒇(𝑽𝑽): solution to 𝑘𝑘 determinant maximization

• Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their coresets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎,

o 𝒇𝒇 𝑼𝑼𝟏𝟏 ∪⋯∪ 𝑼𝑼𝒎𝒎 approximates 𝒇𝒇 𝑽𝑽𝟏𝟏 ∪⋯∪ 𝑽𝑽𝒎𝒎 by a factor 𝜶𝜶

Composable Core-sets
Core-sets [AHV’05]: a subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well

 Composable Core-sets have been studied for the diversity Maximization problems, for other

notions of diversity: minimum pairwise distance, sum of pairwise distances, etc.

 Determinant maximization is a “higher order” notion of diversity

Composable Core-sets [AAIMV’13 and IMMM’14]:

The union of coresets is a coreset for the union

• Let 𝒇𝒇 be an optimization function

o E.g. 𝒇𝒇(𝑽𝑽): solution to 𝑘𝑘 determinant maximization

• Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their coresets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎,

o 𝒇𝒇 𝑼𝑼𝟏𝟏 ∪⋯∪ 𝑼𝑼𝒎𝒎 approximates 𝒇𝒇 𝑽𝑽𝟏𝟏 ∪⋯∪ 𝑽𝑽𝒎𝒎 by a factor 𝜶𝜶

Applications: Streaming Computation
• Streaming Computation:

• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

Applications: Streaming Computation
• Streaming Computation:

• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

• Composable Core-set
• Divide into chunks

𝒏𝒏 𝒏𝒏

Applications: Streaming Computation
• Streaming Computation:

• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

• Composable Core-set
• Divide into chunks
• Compute Core-set for each chunk as it arrives

𝒏𝒏 𝒏𝒏

Core-set

Applications: Streaming Computation
• Streaming Computation:

• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

• Composable Core-set
• Divide into chunks
• Compute Core-set for each chunk as it arrives

𝒏𝒏 𝒏𝒏

Core-set Core-set

Applications: Streaming Computation
• Streaming Computation:

• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

• Composable Core-set
• Divide into chunks
• Compute Core-set for each chunk as it arrives
• Space goes down from 𝑛𝑛 to 𝑛𝑛

𝒏𝒏 𝒏𝒏

Core-set Core-set

Applications: Distributed Computation
• Streaming Computation
• Distributed System:

• Each machine holds a block of data.
• A composable core-set is computed and sent to the server

Core-set

Data

Data

Data

Mapper

Mapper

Mapper

Reducer Solution

Applications: Improving Runtime
• Streaming Computation
• Distributed System
• Similar framework for improving the runtime

Can we get a composable core-set of small size
for the determinant maximization problem?

Composable Core-sets for Volume Maximization

LP-based Optimal Approximation Algorithm of [IMOR’18]:

There exists a polynomial time algorithm for computing an �𝑶𝑶 𝒌𝒌 𝒌𝒌/𝟐𝟐 -composable

core-set of size �𝑶𝑶(𝒌𝒌) for the volume maximization problem.

[IMOR’18]
Approximation �𝑶𝑶 𝒌𝒌 𝒌𝒌/𝟐𝟐

Core-set Size �𝑶𝑶(𝒌𝒌)
Simple? ×

Composable Core-sets for Volume Maximization

Lower bound [IMOR’18]:

Any composable core-set of size 𝒌𝒌𝑶𝑶(𝟏𝟏) for the volume maximization problem must

have an approximation factor of 𝛀𝛀(𝒌𝒌)
𝒌𝒌
𝟐𝟐(𝟏𝟏−𝒐𝒐 𝟏𝟏).

Lower Bound [IMOR’18]
Approximation 𝛀𝛀 𝒌𝒌

𝒌𝒌
𝟐𝟐−𝒐𝒐 𝒌𝒌 �𝑶𝑶 𝒌𝒌

𝒌𝒌
𝟐𝟐

Core-set Size 𝒌𝒌𝑶𝑶 𝟏𝟏 �𝑶𝑶(𝒌𝒌)
Simple? ×

Our Results

Lower Bound [IMOR’18] Greedy
Approximation 𝛀𝛀 𝒌𝒌

𝒌𝒌
𝟐𝟐−𝒐𝒐 𝒌𝒌 �𝑶𝑶 𝒌𝒌

𝒌𝒌
𝟐𝟐 𝑶𝑶(𝑪𝑪𝒌𝒌𝟐𝟐)

Core-set Size 𝒌𝒌𝑶𝑶 𝟏𝟏 �𝑶𝑶(𝒌𝒌) 𝒌𝒌
Simple? × ✔

The widely used Greedy algorithm produces a composable core-set of size 𝑘𝑘 with

approximation factor 𝑂𝑂(𝐶𝐶𝑐𝑐2).

Our Results

The Local Search Algorithm produces a composable core-set of size 𝑘𝑘 with

approximation factor 𝑂𝑂 𝑘𝑘 2𝑐𝑐.

Lower Bound [IMOR’18] Greedy Local Search
Approximation 𝛀𝛀 𝒌𝒌

𝒌𝒌
𝟐𝟐−𝒐𝒐 𝒌𝒌 �𝑶𝑶 𝒌𝒌

𝒌𝒌
𝟐𝟐 𝑶𝑶(𝑪𝑪𝒌𝒌𝟐𝟐) 𝑶𝑶 𝒌𝒌𝒌𝒌

Core-set Size 𝒌𝒌𝑶𝑶 𝟏𝟏 �𝑶𝑶(𝒌𝒌) 𝒌𝒌 𝒌𝒌
Simple? × ✔ ✔

This Talk

The Local Search Algorithm produces a composable core-set of size 𝑘𝑘 with

approximation factor 𝑂𝑂 𝑘𝑘 𝑐𝑐 for the volume maximization problem.

This Talk

The Local Search Algorithm produces a composable core-set of size 𝑘𝑘 with

approximation factor 𝑂𝑂 𝑘𝑘 𝑐𝑐 for the volume maximization problem.

In comparison to the optimal core-set algorithm
 Approximation O 𝑘𝑘 𝒌𝒌 as opposed to 𝑂𝑂 𝑘𝑘 log 𝑘𝑘 𝒌𝒌/𝟐𝟐

 Smaller Size 𝑘𝑘 as opposed to 𝑂𝑂 𝑘𝑘 log 𝑘𝑘
 Simpler to implement (similar to Greedy)

 Better performance in practice

The Local Search Algorithm

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

The Local Search Algorithm

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

The Local Search Algorithm

𝒌𝒌 = 𝟑𝟑

𝑞𝑞

𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

The Local Search Algorithm

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

The Local Search Algorithm

𝒌𝒌 = 𝟑𝟑

𝑞𝑞

𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

The Local Search Algorithm

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

To bound the run time

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

Start with a crude approximation
(Greedy algorithm)

If it increases by at least a factor of
(1 + 𝜖𝜖)

Checking the condition

𝑞𝑞𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯𝑺𝑺∖ 𝒒𝒒 > 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒒𝒒,𝑯𝑯𝑺𝑺∖ 𝒒𝒒)

(𝒌𝒌 − 𝟏𝟏)-dimensional Subspace

Main Lemma [informal]:
Local Search preserves maximum distance to “all” subspaces of dimension 𝒌𝒌 − 𝟏𝟏

𝑽𝑽 is the point set
𝑺𝑺 = 𝐿𝐿𝑆𝑆 𝑉𝑉 is the core-set produced by local search

Main Lemma [informal]:
Local Search preserves maximum distance to “all” subspaces of dimension 𝒌𝒌 − 𝟏𝟏

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑞𝑞∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑽𝑽 is the point set
𝑺𝑺 = 𝐿𝐿𝑆𝑆 𝑉𝑉 is the core-set produced by local search

Main Lemma [informal]:
Local Search preserves maximum distance to “all” subspaces of dimension 𝒌𝒌 − 𝟏𝟏

Proof.

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

𝑝𝑝

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Proof.

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace.

𝑝𝑝

𝑮𝑮

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Proof.

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace.

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆, 𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

𝑝𝑝

𝑮𝑮

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Proof.

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace.

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆, 𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

𝑝𝑝

𝑮𝑮

≤ 𝑥𝑥
≤ 𝑥𝑥

≤ 𝑥𝑥

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Proof.

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace.

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆, 𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal: 𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝒌𝒌𝟐𝟐

𝑝𝑝

𝑮𝑮

≤ 2𝑘𝑘𝑥𝑥
≤ 𝑥𝑥

≤ 𝑥𝑥
≤ 𝑥𝑥

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Proof.

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace.

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆, 𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

𝑯𝑯𝑝𝑝

𝑮𝑮

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝒌𝒌𝟐𝟐

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Proof.

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace.

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆, 𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

• Let 𝑝𝑝𝐻𝐻 be the projection of 𝑝𝑝 onto 𝐺𝐺

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝒌𝒌𝟐𝟐

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Proof.

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace.

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆, 𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

• Let 𝑝𝑝𝐻𝐻 be the projection of 𝑝𝑝 onto 𝐺𝐺

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

≤ 𝑘𝑘𝑥𝑥

≤ 𝑘𝑘𝑥𝑥

Lemma 1: 𝒅𝒅 𝒑𝒑,𝒑𝒑𝑯𝑯 ≤ 𝒌𝒌𝟐𝟐

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝒌𝒌𝟐𝟐

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Proof.

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace.

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆, 𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

• Let 𝑝𝑝𝐻𝐻 be the projection of 𝑝𝑝 onto 𝐺𝐺

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

≤ 2𝑘𝑘𝑥𝑥

Lemma 1: 𝒅𝒅 𝒑𝒑,𝒑𝒑𝑯𝑯 ≤ 𝒌𝒌𝟐𝟐

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝒌𝒌𝟐𝟐

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Proof.

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Proof.

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

• Let 𝑯𝑯−𝒅𝒅 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒅𝒅

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒅𝒅

𝑞𝑞𝑖𝑖

Proof.

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

• Let 𝑯𝑯−𝒅𝒅 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒅𝒅

• Since we did not choose 𝑝𝑝 in LS, 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒅𝒅

𝑞𝑞𝑖𝑖

Proof.

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

• Let 𝑯𝑯−𝒅𝒅 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒅𝒅

• Since we did not choose 𝑝𝑝 in LS, 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

• Since 𝑝𝑝𝐻𝐻 is a projection of 𝑝𝑝 onto 𝐻𝐻, 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒅𝒅

•

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒅𝒅

𝑞𝑞𝑖𝑖

Proof.

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

• Let 𝑯𝑯−𝒅𝒅 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒅𝒅

• Since we did not choose 𝑝𝑝 in LS, 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

• Since 𝑝𝑝𝐻𝐻 is a projection of 𝑝𝑝 onto 𝐻𝐻, 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒑𝒑,𝑯𝑯−𝒅𝒅)

• Thus 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝𝐻𝐻

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒅𝒅

𝑞𝑞𝑖𝑖

Proof.

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒅𝒅=𝟏𝟏𝒌𝒌 𝜶𝜶𝒅𝒅𝒒𝒒𝒅𝒅

• Let 𝑯𝑯−𝒅𝒅 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒅𝒅

• Since we did not choose 𝑝𝑝 in LS, 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

• Since 𝑝𝑝𝐻𝐻 is a projection of 𝑝𝑝 onto 𝐻𝐻, 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒑𝒑,𝑯𝑯−𝒅𝒅)

• Thus 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒅𝒅 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒅𝒅,𝑯𝑯−𝒅𝒅

• Thus |𝜶𝜶𝒅𝒅| ≤ 𝟏𝟏

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝟐𝟐

𝑯𝑯
𝑝𝑝𝐻𝐻

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒅𝒅

𝑞𝑞𝑖𝑖

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Assumption: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖 ,𝐺𝐺 ≤ 𝑥𝑥

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Assumption: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖 ,𝐺𝐺 ≤ 𝑥𝑥

Lemma2: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝐻𝐻 ,𝐺𝐺 ≤ ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑞𝑞𝑖𝑖 ,𝐺𝐺) ≤ 𝑘𝑘 ⋅ 𝑥𝑥 ≤ 𝑘𝑘𝑥𝑥

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Assumption: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖 ,𝐺𝐺 ≤ 𝑥𝑥

Lemma2: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝐻𝐻 ,𝐺𝐺 ≤ ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑞𝑞𝑖𝑖 ,𝐺𝐺) ≤ 𝑘𝑘 ⋅ 𝑥𝑥 ≤ 𝑘𝑘𝑥𝑥

Lemma 1: 𝑑𝑑 𝑝𝑝,𝑝𝑝𝐻𝐻 ≤ 𝑘𝑘𝑥𝑥

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Assumption: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖 ,𝐺𝐺 ≤ 𝑥𝑥

Lemma2: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝐻𝐻 ,𝐺𝐺 ≤ ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑞𝑞𝑖𝑖 ,𝐺𝐺) ≤ 𝑘𝑘 ⋅ 𝑥𝑥 ≤ 𝑘𝑘𝑥𝑥

Lemma 1: 𝑑𝑑 𝑝𝑝,𝑝𝑝𝐻𝐻 ≤ 𝑘𝑘𝑥𝑥 Goal: 𝑑𝑑 𝑝𝑝,𝐺𝐺 ≤ 2𝑘𝑘𝑥𝑥

Claim:
We can write 𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Assumption: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖 ,𝐺𝐺 ≤ 𝑥𝑥

Lemma2: 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝𝐻𝐻 ,𝐺𝐺 ≤ ∑𝑖𝑖=1𝑐𝑐 𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑞𝑞𝑖𝑖 ,𝐺𝐺) ≤ 𝑘𝑘 ⋅ 𝑥𝑥 ≤ 𝑘𝑘𝑥𝑥

Lemma 1: 𝑑𝑑 𝑝𝑝,𝑝𝑝𝐻𝐻 ≤ 𝑘𝑘𝑥𝑥 Goal: 𝑑𝑑 𝑝𝑝,𝐺𝐺 ≤ 2𝑘𝑘𝑥𝑥

Main Lemma [formal]:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Main Theorem
Local Search produces a core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Main Theorem
Local Search produces a core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝑉𝑉2

𝑉𝑉3

𝑉𝑉1

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝑉𝑉2

𝑉𝑉3

𝑉𝑉1

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝒐𝒐𝟏𝟏

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝒐𝒐𝟏𝟏

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑
𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝒐𝒐𝟑𝟑

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝒐𝒐𝟑𝟑

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝒐𝒐𝟑𝟑

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝑉𝑉2

𝑉𝑉3

𝑉𝑉1

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝒑𝒑𝒅𝒅 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Main Theorem
Local Search produces a core-set for volume maximization

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

 Lose a factor of at most 2𝑘𝑘 at each iteration

Main Theorem
Local Search produces a core-set for volume maximization

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}
Since local search preserve

maximum distances to subspaces

Let 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑂𝑂𝑝𝑝𝑑𝑑 = 𝑉𝑉1, … , 𝑉𝑉𝑐𝑐 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Let 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑂𝑂𝑝𝑝𝑑𝑑 = 𝑉𝑉1, … , 𝑉𝑉𝑐𝑐 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑂𝑂𝑝𝑝𝑑𝑑

For 𝑖𝑖 = 1 𝑑𝑑𝑉𝑉 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑆𝑆𝑖𝑖

• 𝑆𝑆𝑉𝑉𝑉𝑉 ← 𝑆𝑆𝑉𝑉𝑉𝑉 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑉𝑉𝑖𝑖}

 Lose a factor of at most 2𝑘𝑘 at each iteration

 Total approximation factor 2𝑘𝑘 𝑐𝑐

Main Theorem
Local Search produces a core-set for volume maximization

Empirical Results

Data Set
• MNIST, with number of parts = 10
• MNIST, with number of parts = 50
• GENES, with number of parts = 10

Process
- Partition the data set randomly into parts
- Compute a core-set using one of the algorithms: Greedy, Local

Search, LP-Based algorithm of [IMOR’18]
- Use greedy on the union of the coresets

Local Search vs Greedy

Improvement of the solution of Local Search
over Greedy
 On average, 1.2%, 2.5%, and 9.6%

improvement
 Some cases up to 58% improvement

Ratio of runtime of Local Search over Greedy
 On average, 6 times slower

Local Search vs. LP-based Algorithm of [IMOR’18]

Improvement of the solution of Local Search
over [IMOR’18]
 On average, 1.4%, 1.8%, and 7.3%

improvement
 Some cases up to 63% improvement

Ratio of runtime of Local Search over
[IMOR’18]
 For lower values of k, Local Search is up to

50 times faster.

[IMOR’18] Greedy Local Search
Approximation 𝑂𝑂 𝑘𝑘 log𝑘𝑘 𝑐𝑐/2 𝑂𝑂(𝐶𝐶𝑐𝑐2) 𝑂𝑂 𝑘𝑘𝑐𝑐

Core-set Size 𝑂𝑂(𝑘𝑘 log𝑘𝑘) 𝑘𝑘 𝑘𝑘
Simple? × ✔ ✔

Empirical Approximation Performs Best

Empirical Runtime Slowest Fastest 4 times slower than Greedy.

Summary
• Volume/Determinant Maximization Problem
• Notion of composable core-sets
• Algorithms that find composable core-sets for volume/determinant maximization

[IMOR’18] Greedy Local Search
Approximation 𝑂𝑂 𝑘𝑘 log𝑘𝑘 𝑐𝑐/2 𝑂𝑂(𝐶𝐶𝑐𝑐2) 𝑂𝑂 𝑘𝑘𝑐𝑐

Core-set Size 𝑂𝑂(𝑘𝑘 log𝑘𝑘) 𝑘𝑘 𝑘𝑘
Simple? × ✔ ✔

Empirical Approximation Performs Best

Empirical Runtime Slowest Fastest 4 times slower than Greedy.

Conclusion
• Local Search might be the right algorithm to use in massive data models of computation.

Summary
• Volume/Determinant Maximization Problem
• Notion of composable core-sets
• Algorithms that find composable core-sets for volume/determinant maximization

[IMOR’18] Greedy Local Search
Approximation 𝑂𝑂 𝑘𝑘 log𝑘𝑘 𝑐𝑐/2 𝑂𝑂(𝐶𝐶𝑐𝑐2) 𝑂𝑂 𝑘𝑘𝑐𝑐

Core-set Size 𝑂𝑂(𝑘𝑘 log𝑘𝑘) 𝑘𝑘 𝑘𝑘
Simple? × ✔ ✔

Empirical Approximation Performs Best

Empirical Runtime Slowest Fastest 4 times slower than Greedy.

Conclusion
• Local Search might be the right algorithm to use in massive data models of computation.

Open Problem
• Tight analysis of Greedy: does it also provide approximation 𝑘𝑘O(k)?

Summary
• Volume/Determinant Maximization Problem
• Notion of composable core-sets
• Algorithms that find composable core-sets for volume/determinant maximization

[IMOR’18] Greedy Local Search
Approximation 𝑂𝑂 𝑘𝑘 log𝑘𝑘 𝑐𝑐/2 𝑂𝑂(𝐶𝐶𝑐𝑐2) 𝑂𝑂 𝑘𝑘𝑐𝑐

Core-set Size 𝑂𝑂(𝑘𝑘 log𝑘𝑘) 𝑘𝑘 𝑘𝑘
Simple? × ✔ ✔

Empirical Approximation Performs Best

Empirical Runtime Slowest Fastest 4 times slower than Greedy.

Summary
• Volume/Determinant Maximization Problem
• Notion of composable core-sets
• Algorithms that find composable core-sets for volume/determinant maximization

Conclusion
• Local Search might be the right algorithm to use in massive data models of computation.

Open Problem
• Tight analysis of Greedy: does it also provide approximation 𝑘𝑘O(k)?

Thank you!

	Composable Core-sets for Determinant Maximization: �A Simple Near-Optimal Algorithm
	Volume (Determinant) Maximization Problem
	Volume (Determinant) Maximization Problem
	Volume (Determinant) Maximization Problem
	Determinant (Volume) Maximization Problem
	Determinant (Volume) Maximization Problem
	Determinant (Volume) Maximization Problem
	What is known?
	What is known?
	What is known?
	What is known?
	What is known?
	What is known?
	What is known?
	What is known?
	Determinantal Point Processes (DPP)
	Application: Diversity Maximization
	Application: Diversity Maximization
	Application: Diversity Maximization
	Application: Diversity Maximization
	Application: Diversity Maximization
	Determinantal Point Processes (DPP)
	Determinantal Point Processes (DPP)
	Determinantal Point Processes (DPP)
	Core-sets
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Applications: Streaming Computation
	Applications: Streaming Computation
	Applications: Streaming Computation
	Applications: Streaming Computation
	Applications: Streaming Computation
	Applications: Distributed Computation
	Applications: Improving Runtime
	Can we get a composable core-set of small size for the determinant maximization problem?
	Composable Core-sets for Volume Maximization�
	Composable Core-sets for Volume Maximization�
	Our Results�
	Our Results�
	This Talk
	This Talk
	The Local Search Algorithm
	The Local Search Algorithm
	The Local Search Algorithm
	The Local Search Algorithm
	The Local Search Algorithm
	The Local Search Algorithm
	To bound the run time
	Checking the condition
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Lemma 2: 𝒅 𝒑 𝑯 ,𝑮 ≤𝒌𝒙
	Lemma 2: 𝒅 𝒑 𝑯 ,𝑮 ≤𝒌𝒙
	Lemma 2: 𝒅 𝒑 𝑯 ,𝑮 ≤𝒌𝒙
	Lemma 2: 𝒅 𝒑 𝑯 ,𝑮 ≤𝒌𝒙
	Lemma 2: 𝒅 𝒑 𝑯 ,𝑮 ≤𝒌𝒙
	Lemma 2: 𝒅 𝒑 𝑯 ,𝑮 ≤𝒌𝒙
	Lemma 2: 𝒅 𝒑 𝑯 ,𝑮 ≤𝒌𝒙
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Empirical Results
	Local Search vs Greedy
	Local Search vs. LP-based Algorithm of [IMOR’18]
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105

